空间控制技术与应用 ›› 2023, Vol. 49 ›› Issue (4): 76-85.doi: 10.3969/j.issn.1674 1579.2023.04.009
摘要: 航天器遥测数据异常检测是识别航天器状态、保障航天器安全可靠运行的关键技术.然而,航天器遥测数据异常检测通常面临时序数据维度大、异常不平衡、标签样本缺乏等问题.基于数据预测的异常检测思想,提出一种基于迁移学习的深度异常检测模型.根据遥测数据时序相关性强的特点,采用具有注意力机制的长短期记忆网络建立遥测数据预测模型.为了克服航天器遥测数据异常标签少、数据维度高的问题,采用微调的迁移学习方法对预测模型进行优化,同时采用全连接层统一不同数据集维度,从而提高了迁移学习模型精度,提升异常检测水平.以美国宇航局公开的两个航天器数据集为实验对象,利用提出的异常检测方法对该数据集异常状态进行识别,结果表明,与经典异常检测算法相比,引入迁移学习能明显提升模型性能,实验结果优于目前常见的异常检测模型,证明了方法的有效性.
中图分类号: